\(\int \frac {x^4}{(d+e x)^3 \sqrt {d^2-e^2 x^2}} \, dx\) [180]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 27, antiderivative size = 146 \[ \int \frac {x^4}{(d+e x)^3 \sqrt {d^2-e^2 x^2}} \, dx=-\frac {d^3 (d-e x)^3}{5 e^5 \left (d^2-e^2 x^2\right )^{5/2}}+\frac {6 d^2 (d-e x)^2}{5 e^5 \left (d^2-e^2 x^2\right )^{3/2}}-\frac {24 d (d-e x)}{5 e^5 \sqrt {d^2-e^2 x^2}}-\frac {\sqrt {d^2-e^2 x^2}}{e^5}-\frac {3 d \arctan \left (\frac {e x}{\sqrt {d^2-e^2 x^2}}\right )}{e^5} \]

[Out]

-1/5*d^3*(-e*x+d)^3/e^5/(-e^2*x^2+d^2)^(5/2)+6/5*d^2*(-e*x+d)^2/e^5/(-e^2*x^2+d^2)^(3/2)-3*d*arctan(e*x/(-e^2*
x^2+d^2)^(1/2))/e^5-24/5*d*(-e*x+d)/e^5/(-e^2*x^2+d^2)^(1/2)-(-e^2*x^2+d^2)^(1/2)/e^5

Rubi [A] (verified)

Time = 0.23 (sec) , antiderivative size = 146, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.185, Rules used = {866, 1649, 655, 223, 209} \[ \int \frac {x^4}{(d+e x)^3 \sqrt {d^2-e^2 x^2}} \, dx=-\frac {3 d \arctan \left (\frac {e x}{\sqrt {d^2-e^2 x^2}}\right )}{e^5}+\frac {6 d^2 (d-e x)^2}{5 e^5 \left (d^2-e^2 x^2\right )^{3/2}}-\frac {24 d (d-e x)}{5 e^5 \sqrt {d^2-e^2 x^2}}-\frac {\sqrt {d^2-e^2 x^2}}{e^5}-\frac {d^3 (d-e x)^3}{5 e^5 \left (d^2-e^2 x^2\right )^{5/2}} \]

[In]

Int[x^4/((d + e*x)^3*Sqrt[d^2 - e^2*x^2]),x]

[Out]

-1/5*(d^3*(d - e*x)^3)/(e^5*(d^2 - e^2*x^2)^(5/2)) + (6*d^2*(d - e*x)^2)/(5*e^5*(d^2 - e^2*x^2)^(3/2)) - (24*d
*(d - e*x))/(5*e^5*Sqrt[d^2 - e^2*x^2]) - Sqrt[d^2 - e^2*x^2]/e^5 - (3*d*ArcTan[(e*x)/Sqrt[d^2 - e^2*x^2]])/e^
5

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 223

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 655

Int[((d_) + (e_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[e*((a + c*x^2)^(p + 1)/(2*c*(p + 1))),
x] + Dist[d, Int[(a + c*x^2)^p, x], x] /; FreeQ[{a, c, d, e, p}, x] && NeQ[p, -1]

Rule 866

Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dist[d^(2*m)/a
^m, Int[(f + g*x)^n*((a + c*x^2)^(m + p)/(d - e*x)^m), x], x] /; FreeQ[{a, c, d, e, f, g, n, p}, x] && NeQ[e*f
 - d*g, 0] && EqQ[c*d^2 + a*e^2, 0] &&  !IntegerQ[p] && EqQ[f, 0] && ILtQ[m, -1] &&  !(IGtQ[n, 0] && ILtQ[m +
n, 0] &&  !GtQ[p, 1])

Rule 1649

Int[(Pq_)*((d_) + (e_.)*(x_))^(m_.)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> With[{Q = PolynomialQuotient[Pq,
a*e + c*d*x, x], f = PolynomialRemainder[Pq, a*e + c*d*x, x]}, Simp[(-d)*f*(d + e*x)^m*((a + c*x^2)^(p + 1)/(2
*a*e*(p + 1))), x] + Dist[d/(2*a*(p + 1)), Int[(d + e*x)^(m - 1)*(a + c*x^2)^(p + 1)*ExpandToSum[2*a*e*(p + 1)
*Q + f*(m + 2*p + 2), x], x], x]] /; FreeQ[{a, c, d, e}, x] && PolyQ[Pq, x] && EqQ[c*d^2 + a*e^2, 0] && ILtQ[p
 + 1/2, 0] && GtQ[m, 0]

Rubi steps \begin{align*} \text {integral}& = \int \frac {x^4 (d-e x)^3}{\left (d^2-e^2 x^2\right )^{7/2}} \, dx \\ & = -\frac {d^3 (d-e x)^3}{5 e^5 \left (d^2-e^2 x^2\right )^{5/2}}-\frac {\int \frac {(d-e x)^2 \left (\frac {3 d^4}{e^4}-\frac {5 d^3 x}{e^3}+\frac {5 d^2 x^2}{e^2}-\frac {5 d x^3}{e}\right )}{\left (d^2-e^2 x^2\right )^{5/2}} \, dx}{5 d} \\ & = -\frac {d^3 (d-e x)^3}{5 e^5 \left (d^2-e^2 x^2\right )^{5/2}}+\frac {6 d^2 (d-e x)^2}{5 e^5 \left (d^2-e^2 x^2\right )^{3/2}}+\frac {\int \frac {(d-e x) \left (\frac {27 d^4}{e^4}-\frac {30 d^3 x}{e^3}+\frac {15 d^2 x^2}{e^2}\right )}{\left (d^2-e^2 x^2\right )^{3/2}} \, dx}{15 d^2} \\ & = -\frac {d^3 (d-e x)^3}{5 e^5 \left (d^2-e^2 x^2\right )^{5/2}}+\frac {6 d^2 (d-e x)^2}{5 e^5 \left (d^2-e^2 x^2\right )^{3/2}}-\frac {24 d (d-e x)}{5 e^5 \sqrt {d^2-e^2 x^2}}-\frac {\int \frac {\frac {45 d^4}{e^4}-\frac {15 d^3 x}{e^3}}{\sqrt {d^2-e^2 x^2}} \, dx}{15 d^3} \\ & = -\frac {d^3 (d-e x)^3}{5 e^5 \left (d^2-e^2 x^2\right )^{5/2}}+\frac {6 d^2 (d-e x)^2}{5 e^5 \left (d^2-e^2 x^2\right )^{3/2}}-\frac {24 d (d-e x)}{5 e^5 \sqrt {d^2-e^2 x^2}}-\frac {\sqrt {d^2-e^2 x^2}}{e^5}-\frac {(3 d) \int \frac {1}{\sqrt {d^2-e^2 x^2}} \, dx}{e^4} \\ & = -\frac {d^3 (d-e x)^3}{5 e^5 \left (d^2-e^2 x^2\right )^{5/2}}+\frac {6 d^2 (d-e x)^2}{5 e^5 \left (d^2-e^2 x^2\right )^{3/2}}-\frac {24 d (d-e x)}{5 e^5 \sqrt {d^2-e^2 x^2}}-\frac {\sqrt {d^2-e^2 x^2}}{e^5}-\frac {(3 d) \text {Subst}\left (\int \frac {1}{1+e^2 x^2} \, dx,x,\frac {x}{\sqrt {d^2-e^2 x^2}}\right )}{e^4} \\ & = -\frac {d^3 (d-e x)^3}{5 e^5 \left (d^2-e^2 x^2\right )^{5/2}}+\frac {6 d^2 (d-e x)^2}{5 e^5 \left (d^2-e^2 x^2\right )^{3/2}}-\frac {24 d (d-e x)}{5 e^5 \sqrt {d^2-e^2 x^2}}-\frac {\sqrt {d^2-e^2 x^2}}{e^5}-\frac {3 d \tan ^{-1}\left (\frac {e x}{\sqrt {d^2-e^2 x^2}}\right )}{e^5} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.39 (sec) , antiderivative size = 99, normalized size of antiderivative = 0.68 \[ \int \frac {x^4}{(d+e x)^3 \sqrt {d^2-e^2 x^2}} \, dx=\frac {\sqrt {d^2-e^2 x^2} \left (-24 d^3-57 d^2 e x-39 d e^2 x^2-5 e^3 x^3\right )}{5 e^5 (d+e x)^3}+\frac {6 d \arctan \left (\frac {e x}{\sqrt {d^2}-\sqrt {d^2-e^2 x^2}}\right )}{e^5} \]

[In]

Integrate[x^4/((d + e*x)^3*Sqrt[d^2 - e^2*x^2]),x]

[Out]

(Sqrt[d^2 - e^2*x^2]*(-24*d^3 - 57*d^2*e*x - 39*d*e^2*x^2 - 5*e^3*x^3))/(5*e^5*(d + e*x)^3) + (6*d*ArcTan[(e*x
)/(Sqrt[d^2] - Sqrt[d^2 - e^2*x^2])])/e^5

Maple [A] (verified)

Time = 0.46 (sec) , antiderivative size = 187, normalized size of antiderivative = 1.28

method result size
risch \(-\frac {\sqrt {-e^{2} x^{2}+d^{2}}}{e^{5}}-\frac {3 d \arctan \left (\frac {\sqrt {e^{2}}\, x}{\sqrt {-e^{2} x^{2}+d^{2}}}\right )}{e^{4} \sqrt {e^{2}}}-\frac {24 d \sqrt {-\left (x +\frac {d}{e}\right )^{2} e^{2}+2 d e \left (x +\frac {d}{e}\right )}}{5 e^{6} \left (x +\frac {d}{e}\right )}+\frac {6 d^{2} \sqrt {-\left (x +\frac {d}{e}\right )^{2} e^{2}+2 d e \left (x +\frac {d}{e}\right )}}{5 e^{7} \left (x +\frac {d}{e}\right )^{2}}-\frac {d^{3} \sqrt {-\left (x +\frac {d}{e}\right )^{2} e^{2}+2 d e \left (x +\frac {d}{e}\right )}}{5 e^{8} \left (x +\frac {d}{e}\right )^{3}}\) \(187\)
default \(-\frac {\sqrt {-e^{2} x^{2}+d^{2}}}{e^{5}}-\frac {3 d \arctan \left (\frac {\sqrt {e^{2}}\, x}{\sqrt {-e^{2} x^{2}+d^{2}}}\right )}{e^{4} \sqrt {e^{2}}}+\frac {d^{4} \left (-\frac {\sqrt {-\left (x +\frac {d}{e}\right )^{2} e^{2}+2 d e \left (x +\frac {d}{e}\right )}}{5 d e \left (x +\frac {d}{e}\right )^{3}}+\frac {2 e \left (-\frac {\sqrt {-\left (x +\frac {d}{e}\right )^{2} e^{2}+2 d e \left (x +\frac {d}{e}\right )}}{3 d e \left (x +\frac {d}{e}\right )^{2}}-\frac {\sqrt {-\left (x +\frac {d}{e}\right )^{2} e^{2}+2 d e \left (x +\frac {d}{e}\right )}}{3 d^{2} \left (x +\frac {d}{e}\right )}\right )}{5 d}\right )}{e^{7}}-\frac {4 d^{3} \left (-\frac {\sqrt {-\left (x +\frac {d}{e}\right )^{2} e^{2}+2 d e \left (x +\frac {d}{e}\right )}}{3 d e \left (x +\frac {d}{e}\right )^{2}}-\frac {\sqrt {-\left (x +\frac {d}{e}\right )^{2} e^{2}+2 d e \left (x +\frac {d}{e}\right )}}{3 d^{2} \left (x +\frac {d}{e}\right )}\right )}{e^{6}}-\frac {6 d \sqrt {-\left (x +\frac {d}{e}\right )^{2} e^{2}+2 d e \left (x +\frac {d}{e}\right )}}{e^{6} \left (x +\frac {d}{e}\right )}\) \(340\)

[In]

int(x^4/(e*x+d)^3/(-e^2*x^2+d^2)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-(-e^2*x^2+d^2)^(1/2)/e^5-3*d/e^4/(e^2)^(1/2)*arctan((e^2)^(1/2)*x/(-e^2*x^2+d^2)^(1/2))-24/5*d/e^6/(x+d/e)*(-
(x+d/e)^2*e^2+2*d*e*(x+d/e))^(1/2)+6/5*d^2/e^7/(x+d/e)^2*(-(x+d/e)^2*e^2+2*d*e*(x+d/e))^(1/2)-1/5*d^3/e^8/(x+d
/e)^3*(-(x+d/e)^2*e^2+2*d*e*(x+d/e))^(1/2)

Fricas [A] (verification not implemented)

none

Time = 0.30 (sec) , antiderivative size = 174, normalized size of antiderivative = 1.19 \[ \int \frac {x^4}{(d+e x)^3 \sqrt {d^2-e^2 x^2}} \, dx=-\frac {24 \, d e^{3} x^{3} + 72 \, d^{2} e^{2} x^{2} + 72 \, d^{3} e x + 24 \, d^{4} - 30 \, {\left (d e^{3} x^{3} + 3 \, d^{2} e^{2} x^{2} + 3 \, d^{3} e x + d^{4}\right )} \arctan \left (-\frac {d - \sqrt {-e^{2} x^{2} + d^{2}}}{e x}\right ) + {\left (5 \, e^{3} x^{3} + 39 \, d e^{2} x^{2} + 57 \, d^{2} e x + 24 \, d^{3}\right )} \sqrt {-e^{2} x^{2} + d^{2}}}{5 \, {\left (e^{8} x^{3} + 3 \, d e^{7} x^{2} + 3 \, d^{2} e^{6} x + d^{3} e^{5}\right )}} \]

[In]

integrate(x^4/(e*x+d)^3/(-e^2*x^2+d^2)^(1/2),x, algorithm="fricas")

[Out]

-1/5*(24*d*e^3*x^3 + 72*d^2*e^2*x^2 + 72*d^3*e*x + 24*d^4 - 30*(d*e^3*x^3 + 3*d^2*e^2*x^2 + 3*d^3*e*x + d^4)*a
rctan(-(d - sqrt(-e^2*x^2 + d^2))/(e*x)) + (5*e^3*x^3 + 39*d*e^2*x^2 + 57*d^2*e*x + 24*d^3)*sqrt(-e^2*x^2 + d^
2))/(e^8*x^3 + 3*d*e^7*x^2 + 3*d^2*e^6*x + d^3*e^5)

Sympy [F]

\[ \int \frac {x^4}{(d+e x)^3 \sqrt {d^2-e^2 x^2}} \, dx=\int \frac {x^{4}}{\sqrt {- \left (- d + e x\right ) \left (d + e x\right )} \left (d + e x\right )^{3}}\, dx \]

[In]

integrate(x**4/(e*x+d)**3/(-e**2*x**2+d**2)**(1/2),x)

[Out]

Integral(x**4/(sqrt(-(-d + e*x)*(d + e*x))*(d + e*x)**3), x)

Maxima [A] (verification not implemented)

none

Time = 0.29 (sec) , antiderivative size = 160, normalized size of antiderivative = 1.10 \[ \int \frac {x^4}{(d+e x)^3 \sqrt {d^2-e^2 x^2}} \, dx=-\frac {\sqrt {-e^{2} x^{2} + d^{2}} d^{3}}{5 \, {\left (e^{8} x^{3} + 3 \, d e^{7} x^{2} + 3 \, d^{2} e^{6} x + d^{3} e^{5}\right )}} + \frac {6 \, \sqrt {-e^{2} x^{2} + d^{2}} d^{2}}{5 \, {\left (e^{7} x^{2} + 2 \, d e^{6} x + d^{2} e^{5}\right )}} - \frac {24 \, \sqrt {-e^{2} x^{2} + d^{2}} d}{5 \, {\left (e^{6} x + d e^{5}\right )}} - \frac {3 \, d \arcsin \left (\frac {e x}{d}\right )}{e^{5}} - \frac {\sqrt {-e^{2} x^{2} + d^{2}}}{e^{5}} \]

[In]

integrate(x^4/(e*x+d)^3/(-e^2*x^2+d^2)^(1/2),x, algorithm="maxima")

[Out]

-1/5*sqrt(-e^2*x^2 + d^2)*d^3/(e^8*x^3 + 3*d*e^7*x^2 + 3*d^2*e^6*x + d^3*e^5) + 6/5*sqrt(-e^2*x^2 + d^2)*d^2/(
e^7*x^2 + 2*d*e^6*x + d^2*e^5) - 24/5*sqrt(-e^2*x^2 + d^2)*d/(e^6*x + d*e^5) - 3*d*arcsin(e*x/d)/e^5 - sqrt(-e
^2*x^2 + d^2)/e^5

Giac [A] (verification not implemented)

none

Time = 0.31 (sec) , antiderivative size = 212, normalized size of antiderivative = 1.45 \[ \int \frac {x^4}{(d+e x)^3 \sqrt {d^2-e^2 x^2}} \, dx=-\frac {3 \, d \arcsin \left (\frac {e x}{d}\right ) \mathrm {sgn}\left (d\right ) \mathrm {sgn}\left (e\right )}{e^{4} {\left | e \right |}} - \frac {\sqrt {-e^{2} x^{2} + d^{2}}}{e^{5}} + \frac {2 \, {\left (19 \, d + \frac {80 \, {\left (d e + \sqrt {-e^{2} x^{2} + d^{2}} {\left | e \right |}\right )} d}{e^{2} x} + \frac {120 \, {\left (d e + \sqrt {-e^{2} x^{2} + d^{2}} {\left | e \right |}\right )}^{2} d}{e^{4} x^{2}} + \frac {70 \, {\left (d e + \sqrt {-e^{2} x^{2} + d^{2}} {\left | e \right |}\right )}^{3} d}{e^{6} x^{3}} + \frac {15 \, {\left (d e + \sqrt {-e^{2} x^{2} + d^{2}} {\left | e \right |}\right )}^{4} d}{e^{8} x^{4}}\right )}}{5 \, e^{4} {\left (\frac {d e + \sqrt {-e^{2} x^{2} + d^{2}} {\left | e \right |}}{e^{2} x} + 1\right )}^{5} {\left | e \right |}} \]

[In]

integrate(x^4/(e*x+d)^3/(-e^2*x^2+d^2)^(1/2),x, algorithm="giac")

[Out]

-3*d*arcsin(e*x/d)*sgn(d)*sgn(e)/(e^4*abs(e)) - sqrt(-e^2*x^2 + d^2)/e^5 + 2/5*(19*d + 80*(d*e + sqrt(-e^2*x^2
 + d^2)*abs(e))*d/(e^2*x) + 120*(d*e + sqrt(-e^2*x^2 + d^2)*abs(e))^2*d/(e^4*x^2) + 70*(d*e + sqrt(-e^2*x^2 +
d^2)*abs(e))^3*d/(e^6*x^3) + 15*(d*e + sqrt(-e^2*x^2 + d^2)*abs(e))^4*d/(e^8*x^4))/(e^4*((d*e + sqrt(-e^2*x^2
+ d^2)*abs(e))/(e^2*x) + 1)^5*abs(e))

Mupad [F(-1)]

Timed out. \[ \int \frac {x^4}{(d+e x)^3 \sqrt {d^2-e^2 x^2}} \, dx=\int \frac {x^4}{\sqrt {d^2-e^2\,x^2}\,{\left (d+e\,x\right )}^3} \,d x \]

[In]

int(x^4/((d^2 - e^2*x^2)^(1/2)*(d + e*x)^3),x)

[Out]

int(x^4/((d^2 - e^2*x^2)^(1/2)*(d + e*x)^3), x)